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ABSTRACT

The dynamics and the structure of the solar corona are determined by its magnetic field. Mea-

suring coronal magnetic fields is, however, extremely hard. The polarization of the low-frequency

radio emissions is one of the few observational probes of magnetic fields in the mid and high corona.

Polarimetric calibration and imaging of the Sun at these frequencies is challenging. The brightness

temperature and degree of polarization of the low-frequency solar radio emissions can vary by several

orders of magnitude. These emissions also show dramatic spectral and temporal variations. Hence,

to study these radio emissions, one needs high dynamic range spectro-polarimetric snapshot imaging.

The Murchison Widefield Array (MWA), a Square Kilometre Array (SKA) precursor, is exceptionally

well-suited for this purpose. Calibration and imaging of solar data to extract this information are,

however, significant challenges in themselves - requiring a deep understanding of the instrument, ca-

pable sophisticated algorithms, and their reliable implementation. To meet these challenges we have

developed an unsupervised and robust polarization calibration and imaging software pipeline. Here

we present the architecture and some implementation details of this pipeline. It delivers high-fidelity

and high-dynamic-range full polarimetric solar radio images at high spectro-temporal resolutions. We

expect this pipeline to enable exciting new science with instruments like the MWA. We also hope

that by not requiring a significant prior background in radio interferometric imaging, this pipeline

will encourage wider use of radio imaging data in the larger solar physics community. The algorithm

implemented here can easily be adapted for future arrays like the SKA.

Keywords: The Sun(1693), Solar physics(1476), Solar corona(1483), Solar coronal radio emission(1993),

Polarimetry(1278), Spectropolarimetry(1973), Radio interferometers(1345), Radio interfer-

ometry(1346), Calibration(2179)

1. INTRODUCTION

Solar phenomena span an enormous range of time

scales, from solar cycle to flares and in terms of energy

from the most massive coronal mass ejections (CMEs)

to the barely discernible nanoflares. It is now well un-

derstood that the solar magnetic field is the primary

driver of all of these phenomena. These magnetic fields

also couple the solar atmosphere to the solar interior.

Corresponding author: Devojyoti Kansabanik

dkansabanik@ncra.tifr.res.in, devojyoti96@gmail.com

Hence, to understand coronal physics and dynamics it

is essential to measure and understand the ever-evolving

coronal magnetic fields. Very recently, Yang et al. (2020)

have successfully demonstrated a method of measuring

the global coronal magnetic fields in the range 1.05–

1.35 R� using near-infrared observations, where R� is

the solar radius. Measuring coronal magnetic fields is

also a key objective for the Daniel K. Inouye Solar Tele-

scope (DKIST; Rast et al. 2021), though these measure-

ments are likely to remain limited to less than 1.5 R�.

The observed polarization properties of low-frequency

coronal radio emissions can serve as excellent probes
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of coronal magnetic fields, even at middle and higher

coronal heights. This is because the magnetic field af-

fects the polarization of radio emissions arising from the

coronal plasma (Alissandrakis & Gary 2021). Polariza-

tion observation also enables a detailed understanding

of the emission mechanism of these low-frequency coro-

nal radio emissions. Many successful examples exist in

the literature, though their numbers have been rather

small and these studies have remained limited to com-

paratively brighter and highly polarized emissions. Most

of these studies have relied on dynamic spectra, for in-

stance, studies of different types of solar radio bursts by

McLean & Labrum (1985); Hariharan et al. (2014); Ku-

mari et al. (2017); Pulupa et al. (2020); Ramesh et al.

(2022) etc., and thermal emission from CME plasma by

Ramesh et al. (2021). In only a handful of instances,

either the information of spatial location (e.g. Mercier

1990; Morosan et al. 2022) and/or spatial structure (e.g.

McCauley et al. 2019; Rahman et al. 2020) of the sources

are also available. Although, very faint circular polar-

ization of gyrosynchrotron emission from CME plasma

(Bastian et al. 2001) and quiet Sun thermal emission

(Sastry 2009) can be used to measure the magnetic field

of CME and the quiet solar corona, detection of these

has not been reported yet.

High-fidelity spectro-polarimetric solar imaging stud-

ies at low radio frequencies are very rare. Brightness

temperature (TB) of solar radio emission varies by as

much as about nine orders of magnitude, and their frac-

tional polarization can vary by about two orders of mag-

nitude (McLean & Labrum 1985; Kansabanik 2022).

These emissions can change drastically over short tem-

poral and spectral spans. Very often, faint emissions can

simultaneously be present with very bright emissions.

This imposes the need for high dynamic-range and high-

fidelity polarimetric imaging over short temporal and

spectral spans. These challenging requirements along

with the technical and instrumental limitations at low

radio frequencies have severely limited polarimetric so-

lar radio imaging studies, despite their well-appreciated

importance.

High-fidelity snapshot solar imaging with a radio in-

terferometer requires an interferometric array with a

dense distribution of antenna elements over a compara-

tively small footprint. This essential requirement is met

by one of the new technology instruments, the Murchi-

son Widefield Array (MWA; Lonsdale et al. 2009; Tin-

gay et al. 2013; Wayth et al. 2018), a Square Kilometre

Array (SKA) (Dewdney et al. 2009) precursor. The 128

antenna elements of the MWA are distributed over a re-

gion of up to 5 km diameter making it exceptionally well

suited for high-fidelity imaging over short temporal and

spectral scales. Though the MWA data are intrinsically

capable of yielding high-fidelity solar images, doing so

involves surmounting several challenges. Some of these

challenges are – issues due to the Sun being an excep-

tionally bright source, ionospheric effects, issues arising

due to large data volumes, and the in-feasibility of the

usual approach to interferometric imaging. These is-

sues have successfully been dealt with in the robust cal-

ibration and total intensity imaging pipeline developed

by Mondal et al. (2019), christened Automated Imaging

Routine for Compact Arrays of the Radio Sun (AIR-

CARS). The high-fidelity spectroscopic snapshot images

it delivers represent the state-of-the-art and have led

to several interesting results at low radio frequencies,

such as the discovery of quasi-periodic pulsations of so-

lar radio bursts (Mohan et al. 2019b,a; Mondal & Oberoi

2021), the discovery of Weak Impulsive Narrowband

Quiet Sun Emissions (WINQSEs; Mondal et al. 2020b;

Mondal 2021) and the measurement of plasma parame-

ters of CMEs using gyrosynchrotron emission from the

CME plasma (Mondal et al. 2020c).

AIRCARS was designed for total intensity imaging.

But unlocking the potential of low radio frequency solar

science requires polarimetric imaging, as argued at the

beginning of this section. An algorithm, Polarimetry us-

ing Automated Imaging Routine for the Compact Arrays

of the Radio Sun (P-AIRCARS), has been developed to

achieve this and been presented in Kansabanik et al.

(2022b) (Paper-I hereafter). In addition to providing the

functionality for polarimetric imaging, P-AIRCARS also

offers several improvements over AIRCARS including a

modular architecture, an improved calibration strategy,

and more efficient parallelization. This companion pa-

per describes the implementation and architecture of P-

AIRCARS.

We organize the paper as follows. We first discuss

the design principles of P-AIRCARS in Section 2. We

briefly describe the calibration algorithm in Section 3.

Section 4 describes the architecture of the pipeline. A

custom-developed flagging module for P-AIRCARS is

described in Section 5. Section 6 describes the choices

of parameters for calibration and imaging followed by

salient features of P-AIRCARS in Section 7. We discuss

current limitations and future works in Section 9 and

ends with the conclusions in Section 10.

2. DESIGN PRINCIPLES OF P-AIRCARS

The MWA operates from 80 to 300 MHz with an in-

stantaneous bandwidth of 30.72 MHz, which can be split

into 24 course channels of 1.28 MHz each and distributed

across the entire band. At the MWA almost half of the

observed band is lost to instrumental artifacts.MWA
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paircarstools

paircarstasks

CubiCal/ 
Quartical

paircarsutils

paircarsdata

Tools to access MS, estimate selfcal and 
imaging parameters, perform a single selfcal 
round, etc. (Independent of solar constraints)

Tasks to perform self-calibration, checks selfcal
 convergences, control parallelization, final imaging. 
(Tasks are written specifically for solar observations)

Independent full Jones calibration module 
(Kenyon et al. 2018), optimized for P-AIRCARS. 

Some useful tools for plotting visibilities and images, 
monitoring progress remotely, customised tasks etc.

Necessary data to run P-AIRCARS, e.g. MWA 
primary beam model, calibrator models, etc.

P-AIRCARS

Figure 1. Schematic diagram of P-AIRCARS highlighting its main modules. – Two main modules of P-AIRCARS
are paircarstools and paircarstasks. CubiCal or its new implementation, QuartiCal, is an independent calibration software (Kenyon
et al. 2018; Sob et al. 2019), which has been customized and integrated with P-AIRCARS. paircarsdata and paircarsutils are
the two modules to make the P-AIRCARS user-friendly and provide MWA-specific information. Components of each of these
modules are described in Section 4.

solar observations are typically done with 10 kHz and

0.5 s resolution. Making images at this temporal and

spectral resolution over the useful part of the complete

band leads to approximately 370,000 images for an ob-

serving duration of 4 minutes. In its next phase, the

MWA is expected to have twice as many antenna el-

ements, a much larger instantaneous bandwidth, and

higher time and frequency resolution. This will dramat-

ically increase the data volumes generated by the ar-

ray. The future SKA is expected to produce even larger

volumes of data. Performing the calibration and snap-

shot spectro-polarimetric imaging of such large volumes

of data manually is infeasible. One necessarily needs a

software pipeline, ideally with the following capabilities

:

1. The calibration and imaging algorithm and imple-

mentation must be robust.

2. It should be capable of unsupervised operation.

3. The algorithms it implements should be data-

driven and not rely on ad-hoc assumptions.

4. The software implementation should provide ef-

ficient parallelization which scales well with the

available hardware resources.

While AIRCARS provided state-of-the-art total inten-

sity images, it did not meet the last two of the require-

ments stated above. AIRCARS made some ad-hoc as-

sumptions while choosing the calibration and imaging

parameters, and the calibration approach limited the

parallelization only to the frequency axis. Hence, adding

polarization calibration to the AIRCARS framework is

not sufficient. We take this opportunity of adding polari-

metric calibration to completely redesign the software

framework and calibration approach to overcome these

limitations in P-AIRCARS. In addition, P-AIRCARS

has also been developed to be deployable across a variety

of hardware environments – ranging from laptops and

workstations to high-performance computers (HPCs).

This makes it very flexible.

Radio interferometric imaging inherently involves a

steep learning curve. The calibration and imaging pro-

cesses require making careful tuning of the algorithms
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involved, the choice of which determines the quality of

the final images. This, in turn, requires the users to

develop a detailed understanding of the data and the

instrument involved. A consequence has been that solar

radio imaging has been the domain of a comparatively

small number of expert practitioners and has not found

widespread adoption in solar physics, as compared to

other wavebands. One of the objectives for P-AIRCARS

is to overcome this barrier, enable scientific results from

the new generation of much more capable radio instru-

mentation, and help radio analysis become mainstream.

To achieve this, P-AIRCARS has been designed to work

without requiring any radio interferometry-specific in-

put from the user. It makes initial choices for parame-

ters for calibration and imaging based on the data it is

operating on.

As a corollary of the above requirement, P-AIRCARS

is designed to be fault-tolerant, in the sense that when it

encounters issues, it makes smart decisions about updat-

ing the parameters for calibration and imaging based on

the nature of the issue faced. For a well-informed user,

P-AIRCARS allows complete flexibility to tune the al-

gorithms as desired. The rest of the paper describes

the software framework, calibration, and parallelization

strategies adopted for P-AIRACRS following the design

principles described here.

3. BRIEF DESCRIPTION OF THE CALIBRATION

ALGORITHM

We have implemented a robust polarization cali-

bration algorithm (Kansabanik et al. 2022b) in P-

AIRCARS, developed based on the Measurement Equa-

tion framework (Hamaker et al. 1996; Hamaker, J. P.

2000). Being an aperture array instrument, the MWA

has a large field of view (FoV), and high primary beam

sidelobes (Neben et al. 2015; Sokolowski et al. 2017; Line

et al. 2018). Hence, at the MWA, calibrator observations

during the daytime are contaminated by solar emissions.

Hence, P-AIRCARS implements a self-calibration-based

calibration algorithm, which uses some well-known prop-

erties of the low-frequency quiet solar emissions (Kans-

abanik et al. 2022b) along with the primary beam re-

sponse of the MWA antenna tiles (Sokolowski et al.

2017). This algorithm is described in detail in paper-I.

Here we describe it briefly to place the implementation

details in context.

An interferometer measures the cross-correlations be-

tween its antenna pairs. The measured cross-correlation

(visibility), V ′ij, between antennas i and j can be ex-

pressed in terms of its true value, Vij through the Mea-

surement Equation (Hamaker, J. P. 2000),

V ′ij = Ji Vij J
†
j +Nij (1)

where, Jis are the 2× 2 Jones matrices representing the

antenna-dependent instrumental and atmospheric prop-

agation effects, and Nij is the additive noise of the in-

strument. It is standard practice in interferometry to

break Jis into multiple terms, each describing an instru-

mental and/or atmospheric propagation effect. At low

radio frequencies, the ionospheric propagation effect is

the only major atmospheric effect. We decompose Jis

as:

Ji(ν, t, ~l) = Gi(t) Bi(ν) Kcross(ν, t) Di(ν, t)

× Ei(ν, t, ~l)
(2)

where, ν, t and~l represent frequency, time, and direction

in the sky plane. These individual terms in Equation 2

for antenna i are:

1. Gi(t) : Product of time-dependent instrumental

and ionospheric gain.

2. Bi(ν) : Instrumental bandpass.

3. Kcross(ν, t): Phase difference between the recep-

tors for the two orthogonal polarization (X and Y,

in the case of MWA) for the reference antenna.

This is also referred to as the cross-hand phase.

4. Ei(ν, t, ~l) : Direction dependent primary beam

model.

5. Di(ν, t) : Direction independent error on the pri-

mary beam model.

To obtain Vij from V ′ij, each of these terms needs to

be estimated precisely and corrected for. They are esti-

mated in three major calibration steps:

1. Intensity self-calibration : Intensity self-

calibration uses the unique array configuration of

the MWA with a condensed core with a large num-

ber of antennas distributed over a comparatively

small array footprint. Gi(t)s are estimated and

corrected in this step (Mondal et al. 2019; Kansa-

banik 2022).

2. Bandpass self-calibration : Bandpass self-

calibration estimates and corrects for Bi(ν)s over

each of the 1.28 MHz coarse channels. Data from

quiet solar times are used for this and the inte-

grated solar flux density is assumed to remain con-

stant across a coarse channel. The inter-coarse

channel bandpass is corrected using an indepen-

dent robust method (Kansabanik et al. 2022a) to

determine an absolute flux density scale.
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3. Polarization calibration : This involves first

correcting for Kcross(ν, t), Ei(ν, t, ~l) which are

estimated independently. Next the Dis are es-

timated and corrected using a perturbative self-

calibration-based algorithm described in Paper-I.

These three calibration steps form the three main pillars

of the full Jones calibration algorithm of P-AIRCARS.

4. ARCHITECTURE OF THE PIPELINE

P-AIRCARS architecture is highly modular. It has

been written with ease of maintenance and adoption to

other interferometers with compact core configurations

in mind. A large fraction of the P-AIRCARS is written

in Python 3. Some of its core modules used for calibra-

tion and flagging are written in C/C++. A schematic

diagram of P-AIRCARS describing all of its modules is

shown in Figure 1.

Two core modules of P-AIRCARS are paircarstools
and paircarstasks and are shown by black boxes in Fig-

ure 1. paircarstools contains functions and classes to

perform full polarization self-calibration for any radio

interferometric observation. Its functions do not impose

any constraint(s) specific to solar observation and/or

the interferometer used. The optimization specific to

solar observing is done by paircarstasks, which uses the

functionality provided by paircarstools to perform the

self-calibration tasks, as mentioned in Section 3. pair-
carstasks is written in a manner to remain independent

of the interferometer used. Some of the functions of pair-
carstasks make use of some well-known physical proper-

ties of the Sun.

The third module, CubiCal, is an independent full

Jones calibration software suite developed by Kenyon

et al. (2018) and Sob et al. (2019). We adopted it in

P-AIRCARS with some customization. A newer version

of CubiCal, called QuartiCal1, has become available re-

cently, and its integration in P-AIRCARS is currently

underway. The paircarsutils module provides the utili-

ties for the deployment of P-AIRCARS across a range

of hardware and software architectures and its efficient

parallelization. It is currently optimized for the use of

MWA data. The paircarsdata module provides a collec-

tion of information specific to the MWA (e.g. the MWA

beam shapes (Sokolowski et al. 2017)) and MWA obser-

vations (e.g. database of solar observations, calibration

database (Sokolowski et al. 2020)).

All functions of these modules can broadly be divided

into two major categories – Calibration block and Imag-

ing block. Instead of describing these modules function-

1 https://pypi.org/project/quartical/

by-function, we present the workflows of these two major

blocks in the Sections 4.1 and 4.2 respectively. Inter-

ested users can find the details of these functions in the

P-AIRCARS documentation available online2.

4.1. Implementation of Calibration Block

The first major block of the P-AIRCARS is the cal-

ibration block. Calibration is done in three steps as

discussed in Section 3. Each of these steps takes several

iterations to converge. Intensity self-calibration takes

the maximum number of iterations to converge. Since

the antenna gains vary over time and frequency, in prin-

ciple, one should perform self-calibration for each times-

tamp and frequency channel independently. In the case

of standard astronomical observations, the sky model is

assumed to be constant over a much longer time and

frequency span, hence it is not necessary to make an in-

dependent source model for each neighboring time and

frequency slice. However, due to the intrinsic spectro-

temporal variability of solar emissions, one is forced

to make an independent source model for every time

and frequency slice during self-calibration. Performing

self-calibration for every time and frequency slice is ex-

tremely compute-intensive. As the calibration for each

of the time and frequency slices needs to be done in-

dependently, it can be cast in an embarrassingly paral-

lel framework. This is exactly what is implemented in

P-AIRCARS. The flowchart of the calibration block is

shown in Figure 2.

To start the process of calibration, for datasets with

more than three 1.28 MHz coarse channels, three spec-

tral channels are chosen from three different coarse chan-

nels spanning the entire bandwidth of the data. Else,

a spectral channel is chosen from each of the available

three or fewer coarse channels. Each of these spectral

channels is defined as a “Reference frequency” (RF).

Next, a time slice, defined as “Reference time” (RT),

is chosen for each of these RFs separately on which to

perform the calibration. These are referred to as “Refer-

ence Time and Frequency” (RTF) slices. Figure 3 shows

an example with four coarse channels with their bound-

aries marked by dashed magenta lines. RTFs are shown

by blue cells in this Figure. The criteria for choosing

RTFs are discussed in Section 4.1.3. The intensity self-

calibration is performed at RTFs. If calibrator obser-

vations are available, P-AIRCARS first applies the gain

solutions obtained from them. Otherwise, intensity self-

calibration is initiated on the raw data. The major steps

of the intensity calibration for RTFs are shown by the

2 https://p-aircars.readthedocs.io/en/latest

https://pypi.org/project/quartical/
https://p-aircars.readthedocs.io/en/latest
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of data

Yes NoPerform differential
intensity self-cal

for a common time

Apply 
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Figure 2. Flowchart describing the calibration block of P-AIRCARS. Calibration blocks can be divided into four
major blocks. Calibration steps for the RTFs are shown inside the blue box. The dark grey box shows the differential intensity
self-calibration for a common timeslice for RFs. Intensity self-calibration for other times and frequencies are shown inside the
orange box. The green box and purple box show the bandpass and polarization self-calibration steps respectively.

blue box in Figure 2. The calibration process is initi-

ated using the highest time resolution available in the

data. If insufficient data is deemed to be available for

calibration (e.g. due to low-signal-to-noise of the cali-

bration solutions), the temporal span of the data used

for calibration is progressively increased in an attempt

to arrive at reliable gain solutions. Care is taken to not

exceed the timespans over which solar emissions or iono-

spheric conditions are expected to evolve. The default

value of this maximum timespan is set to 10 s, though

the user has the flexibility to change it. The intensity

self-calibrations of RTFs are done in parallel. Once this

is done the pipeline moves to the next stage, namely

bandpass self-calibration.

Sokolowski et al. (2020) demonstrated that the varia-

tion of phases across the 80–300 MHz band for the MWA

antenna tiles can be well modeled by a straight line and

that the phase variation across each 1.28 MHz coarse

channel is rather small. However, the variation of the

amplitude across a single 1.28 MHz coarse channel can-

not be modeled as a straight line. Hence, while it is rea-

sonable to interpolate the phases across the MWA band

using a linear model, this approach is not suitable for

the amplitude part of the antenna gain solutions. The

phase variations over a large bandwidth cause a signif-

icant frequency-dependent shift of the source from the

phase center. Small phase shifts can be corrected using

an image-based correction described in Section 4.1.5. To

avoid the problem of large phase shifts, the phase part

of the gain solutions are interpolated across the band,

while the amplitudes are held constant at unity. If the

RTs are the same for all RTFs, the phase part of the

gain solutions at RTFs are interpolated across frequency.

Otherwise, a common time slice is chosen for all RFs,

and a gain solution is obtained by differential intensity

self-calibration after applying the gain solution from the



Implementation of P-AIRCARS 7

Time stamps 

F
re

qu
en

cy
 C

ha
nn

el
s

Figure 3. Time-frequency grid for parallel calibra-
tion. Blue blocks represent the RTFs. The underlying work-
flow for these blue cells is shown by the blue block in Figure 2.
If RTs are not the same for all the RFs, the phase part of the
gain solutions are interpolated on a common timeslice shown
by the dark grey cells. Orange blocks represent the time and
frequency slices where differential intensity self-calibration is
performed. Bandpass and polarization calibrations are per-
formed at the same time and frequency slices for individual
coarse channels, which are marked by green. Pink dotted
lines demarcate the 1.28 MHz wide coarse channels.

RT for that RF, as shown by dark grey cells in Figure

3. The phase part of the gain solutions of this common

timeslice is interpolated across frequency.

Next, a time grid is defined for each of the coarse chan-

nels for which the differential gain solutions are com-

puted. These grid points are shown by orange cells in

Figure 3. Differential self-calibrations are performed in

parallel as shown in the orange box in Figure 2. Simul-

taneously, bandpass and polarization calibration for a

single coarse channel is performed on a single timeslice

defined as “band-pol reference time (BPRT)”. Bandpass

and polarization calibrations for a single coarse channel

are done sequentially, while they are done in parallel for

different coarse channels. The criteria for the choice of

BPRT are discussed in Section 4.1.4. The BPRTs are

shown by the green boxes with purple borders in Figure

3, and bandpass and polarization calibration blocks are

marked in green and purple in Figure 2. If the gain solu-

tions are not available at BPRT, a differential intensity

self-calibration is performed at BPRT at RF.

Once all the calibrations are complete, this informa-

tion is compiled in a single calibration table spanning the

entire time and frequency range. Linearly interpolated

gain solutions are drawn from this final calibration ta-

ble and applied during imaging. The choice of RTF and

BPRT relies on identifying a time slice with a quiet solar

emission in the flux density calibrated dynamic spectra.

We describe the process of flux density calibration of the

dynamic spectra first in Section 4.1.1, followed by the

details of the criteria for the choice of RTF and BPRT

in Sections 4.1.3 and 4.1.4 respectively.

4.1.1. Initial Flux-density Calibrated Dynamic Spectrum of
the Sun

The flux density calibrated dynamic spectrum is made

using the method described by Oberoi et al. (2017). To

compute these dynamic spectra, we have used an im-

proved primary beam model for the MWA (Sokolowski

et al. 2017) along with the more precise estimation of

receiver temperatures (Ung et al. 2020). The results

from this are consistent with the independent and robust

image-based flux density calibration method (Kansa-

banik et al. 2022a).

An example flux density calibrated dynamic spectrum

is shown in the top panel of Figure 4. Two sample flux

density calibrated images using the method Kansabanik

et al. (2022a) is shown in the bottom panel of Figure

4. To compare the TB from the dynamic spectrum with

those from the flux calibrated TB images, one needs to

integrate over the radio Sun. We use the analytical ex-

pression given in Oberoi et al. (2017) to estimate the

size of the radio Sun over which to perform this integra-

tion. These are shown by blue circles in the bottom pan-

els of Figure 4. The first timestamp, 06:12:50.25 UTC,

marked by a green point in the dynamic spectrum, has

a TB of 0.92 MK. The disc averaged TB obtained from

the image shown in the bottom left panel of Figure 4 is

0.7 MK. For the second timestamp, 06:13:06.25 UTC,

marked by a cyan point in the dynamic spectrum, has

TB of 18 MK. The corresponding disc averaged TB ob-

tained from the image shown in Figure 4 is 23 MK. The

values obtained from both, the images and the dynamic

spectrum, are similar. This gives us the confidence that

the initial flux density calibrated dynamic spectrum can

reliably be used to choose the BPRT.

4.1.2. Identifying Bad Data from the Dynamic Spectrum
for Solar Observations

Even though the MWA is situated in an exceptionally

low radio frequency interference (RFI) environment and

is a very stable instrument, occasionally the MWA data

does suffer from RFI and/or instrumental issues. It is

important to ensure that only healthy data is examined

while determining the BPRT and RTF. Sometimes, ac-

tive solar emissions can mimic bad data, making it hard

to identify bad data based on statistical characteristics

in the time and frequency plane. We use the fact that for
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Figure 4. Comparison of the dynamic spectrum with the flux calibrated brightness temperature maps. Top
panel: Dynamic spectrum obtained following the method developed by Oberoi et al. (2017). Bottom panel: Left image is
for 06:12:50.25 UTC and the right image is for 06:13:06.25 UTC. For 06:12:50.25 UTC, marked by a green dot, the average TB

obtained from the dynamic spectrum is 0.92 MK, which is close to the disc averaged value, 0.7 MK, obtained from the image.
For 06:13:06.25 UTC, marked by a cyan dot, the average TB obtained from the dynamic spectrum is 18 MK, which is also
similar to the disc averaged value, 23 MK, obtained from the image. The size of the disc is shown by the blue circles, which are
40 arcmins in size.
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Figure 5. Demonstration of flagging of the bad data based on solar dynamic spectrum. Top panel : It shows
the dynamic spectrum of averaged visibility amplitudes for long baselines (longest 10 % of the baselines) divided by average
mean visibility amplitudes of short baselines (< 20 m). The left panel shows the dynamic spectrum for XX polarization and
the right panel shows it for YY polarization. Middle panel : The visibility amplitude of a healthy time is plotted against the
uv-distance. Purple points represent XX polarization and grey points represent the YY polarization. Bottom panel : The
visibility amplitude of a bad timestamp, 01:25:33.75 UTC, is plotted against the uv-distance. This time is marked by the red
box in the top left panel. Purple points represent XX polarization and grey points represent the YY polarization.
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the MWA the amplitude distribution with uv-distance

for healthy active/quiet Sun emissions and bad data are

remarkably different to identify the latter. For the quiet

Sun, the visibility distribution represents a disc of about

40 arcmins. It has been found that the compact sources

usually associated with active emissions are slightly re-

solved at MWA resolution (Mohan et al. 2019b; Mohan

2021a; Mondal & Oberoi 2021; Mohan 2021b). This

implies that the visibility distribution for these slightly

resolved sources must show a slow drop in amplitudes

with increasing baseline length. On the other hand, the

small footprint of the MWA and the fact that the RFI

sources are mostly far away imply that the entire array

tends to see the same RFI environment, and shows a rel-

atively constant visibility amplitudes distribution with

uv-distance.

Flux density, and hence the corresponding visibility

amplitudes, of the Sun, can vary by many orders of

magnitude (McLean & Labrum 1985; Kansabanik 2022).

The strength of the RFI also can vary by multiple or-

ders of magnitude. Hence, we define a quantity that is

insensitive to the magnitude of the visibility amplitudes

themselves but relies on their distribution as a function

of baseline length to identify bad data. This quantity is

the ratio of mean visibility amplitudes of long and short

baselines (< 20 m), ra. While the short baseline lengths

are always the same, P-AIRCARS uses the longest 10 %

of the baselines to calculate the mean visibility ampli-

tude for long baselines.

Figure 5 shows an example to illustrate the efficacy

of this approach. The top panels show the dynamic

spectra of ra. The middle panels show the amplitude

distribution for a healthy time and frequency slice for

XX (left panel) and YY (right panel) polarization. The

bottom panels show the amplitude distribution for XX

(left panel) and YY (right panel) polarization for the

time slice 01:25:33.75 UTC. The difference between the

visibility distribution of the healthy and bad data is self-

evident. The data for only the XX polarization is bad.

The time and frequency spans for which this is the case

are identified with high contrast in the top left panel.

The data for the YY polarization for this time slice is

good, and hence it does not stand out in the ra dy-

namic spectrum. A numerical threshold of 5σ is used to

identify bad data in the median subtracted ra dynamic

spectra, where σ refers to the rms of the ra dynamic

spectra. This demonstrates the capability of ra dynamic

spectra to unambiguously and efficiently distinguish be-

tween healthy and bad data.

This method is efficient at identifying the bad time

and frequency slices when the entire array faces some

issues. Situations, where RFI affects only a small part

of the array, are rare at the MWA, and independent en-

gineering logs identify all known tiles and receivers with

technical issues. Hence this approach is quite adequate

to identify bad data in an automated and unsupervised

manner. Finer levels of identification and flagging of

bad data are carried out at later stages (Section 5).

4.1.3. Choice of Reference Time and Frequencies

The calibration solutions from the RT are applied to

all other timestamps as the initial gain solutions. Hence,

it is important to choose a timeslice that enables us to

determine gain solutions for each of the antenna tiles

with good signal-to-noise. An additional requirement

is that the image for this timeslice should also show

the quiet Sun disc with sufficient fidelity so that it can

be used for alignment of solar images as discussed in

Section 4.1.5. For the current levels of imaging fidelity

achievable with P-AIRCARS using MWA data, these

requirements are typically met when a compact source

with TB ≤ 107 K is present on the Sun. The presence

of much brighter sources makes it harder to image the

quiet Sun disc with sufficient fidelity. The absence of

such a compact feature can limit the signal-to-noise of

the gain solutions.

Dirty images can be made for all of the time and fre-

quency slices. If prior gain solutions from a calibrator

observation are available, they are applied before this

imaging. Even when no prior gain solutions are avail-

able, the MWA is coherent enough to be able to proceed

with imaging, as has been demonstrated by Kansabanik

(2022).

The TB of the solar emission can vary drastically with

time, but it does not vary by a large amount over a sin-

gle coarse channel of 1.28 MHz. Hence, the rms noise of

the dirty images can vary across time due to changes in

solar flux density, but it does not vary drastically across

frequency. An example dynamic spectrum of the rms

measured far away from the Sun is shown in Figure 6

which shows these characteristics. We have examined

several datasets and established that the temporal vari-

ations of the rms noise are largely independent of the

spectral channel over this small bandwidth.

At first, time slices that meet the TB ≤ 107 K re-

quirement are identified from the flux density calibrated

dynamic spectrum. There are often multiple timeslices

that meet this requirement. First dirty images are made

for every time slice meeting this requirement, for a single

arbitrarily chosen spectral slice. The time slice with the

highest imaging dynamic range is chosen to be the RT.

The RF channel is identified next by following a similar

procedure along the frequency axis for the chosen RT.

4.1.4. Choice of Band-pol Reference Time
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Figure 6. Dynamic spectrum of image rms. The spec-
tral and temporal span of the dynamic spectrum is 1.28 MHz
and 240 s respectively. There is significant temporal varia-
tion in the image rms, while that along the spectral axis is
barely evident.

As the requirements for the bandpass and polariza-

tion calibration are different from those for the initial

calibration, the criteria for the choice of BPRT are also

different from those for the RTF. For reasons discussed

in detail by Kansabanik et al. (2022a,b), bandpass and

polarization calibration require data taken under quiet

solar conditions. The quiet solar time is identified in

the given data, using the flux density calibrated dy-

namic spectrum obtained as described in section 4.1.1.

At first, a 1.28 MHz frequency averaged time series is ob-

tained from the dynamic spectrum for a coarse channel.

The timestamps with TB varying between 105 − 106 K

are chosen to represent the quiet sun times. Among

these, the timestamp with the maximum DR obtained

from frequency averaged dirty images is selected as the

BPRT. The BPRT may be different from the RTF cho-

sen for the intensity self-calibration, and also can be

different for different coarse channels, as indicated in

Figure 3.

4.1.5. Alignment of the Center of Solar Radio Disc

A common problem for any self-calibration-based ap-

proach is the loss of information about the absolute

phase. The images for the RTFs are aligned using

an image-plane-based method. Intensity self-calibration

first performs phase-only self-calibration, followed by

amplitude-phase self-calibration (Mondal et al. 2019;

Kansabanik et al. 2022b). Once the phase-only intensity

self-calibration has converged, an image with the well-

demarcated solar disc is available (Left panel of Figure

7). The desired phase center of the solar disc is the

center of the optical solar disc. The blue circle marks

the phase center of the radio image, which is set at the

center of the optical disc.

The region with more than 20σ detection significance

is considered to be the solar disc, where σ is the rms

noise in the image measured close to the Sun. To avoid

the intensity weighting, we define a mask with all the

regions more than 20σ set to unity and the rest of the

image set to zero as shown in the middle panel of Fig-

ure 7. The center of mass of the masked region is cho-

sen to be the center of the solar radio disc marked by

the red circle. The phase center of the source model is

shifted to align with the blue circle. Using this aligned

source model, a few rounds of phase-only self-calibration

are performed. When this converges, the solar disc of

the final image shown in the right panel of Figure 7

lies at the phase center of the image. The final set of

self-calibration solutions is then applied to the entire

dataset, and bring it to a common phase center.

4.1.6. Flux Density Calibration

Another common limitation of any self-calibration-

based approach is the loss of information about the

absolute flux density scale. At the MWA, when dedi-

cated calibrator observations are available with the same

spectral and attenuation configuration as solar obser-

vation, an absolute flux density scale is obtained from

the gain solution of the calibrator observations. When

no calibrator is available with the above-mentioned cri-

teria, P-AIRCARS does flux density calibration using

an independent method developed by Kansabanik et al.

(2022a) and is included in the bandpass self-calibration

solutions.

4.2. Implementation of Imaging Block

Once calibration solutions spanning the time and fre-

quency ranges of interest are available, P-AIRCARS

proceeds to image. In addition to imaging, this block

also corrects the images for the instrumental primary

beam. The problem is essentially embarrassingly par-

allel, parallelization of the imaging block is straightfor-

ward. The key requirement here is to allow the user to

allocate a chosen fraction of resources to P-AIRCARS

and to make optimal use of these resources. This is

achieved using a custom-developed parallelization algo-

rithm described in Section 4.2.1. The flowchart of the

entire imaging block is shown in Figure 8. The function-

ality in the blue box marked as ‘single imaging block’ is

executed in parallel for the different time and frequency

slices and is described in Section 4.2.2.

4.2.1. Parallelization of Imaging Block

As mentioned in Section 2, the total number of im-

ages to be produced can be as many as 370, 000 for ob-
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Figure 7. Alignment of the solar radio disc center with the optical solar disc center. Left panel: Image after
phase-only self-calibration is shown. The center of the optical solar disc shown by the blue dot is not at the center of the radio
disc. Middle panel: It shows the mask of the solar disc and the red dot represents the center of the radio disc. Right panel:
Final image after alignment. The center of the optical and radio disc coincide after the alignment.
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servation with a 30.72 MHz bandwidth and 4 minutes

duration. The number of imaging threads required for

this task is much larger than the compute capacity avail-

able with most machines. Hence, a scalable mechanism

for their efficient parallelization is required. Whenever,

the number of imaging jobs, Njob, is smaller than the

available CPU threads, Nthread, all jobs are spawned si-

multaneously. Each job is assigned n numbers of CPU

threads, where n is the closet integer of Nthread/Njob.

Otherwise, P-AIRCARS allocates three CPU threads for

each single imaging block. Hence, the Njob, which can

be spawned simultaneously, is given by:

Njob =
Nthread

3
(3)

. Different imaging jobs may take different run times.

Hence, to utilize the hardware resources efficiently, as

soon as one imaging job is done, a new one is spawned.

This process continues until all imaging jobs have been

spawned.

4.2.2. Single Imaging Block

The single imaging block makes the image of a sin-

gle time and frequency slice and is marked by the blue

shaded box in Figure 8. The imaging block offers the

users the choice of using either WSClean (Offringa et al.

2014) or CASA (McMullin et al. 2007), with the default

being set to WSClean. Imaging parameters are deter-

mined from the data, as discussed in Section 6.2. Users

can choose to either do full polarimetric imaging or only

total intensity imaging.

First, the final calibration solutions are applied to the

data. This is followed by a shallow deconvolution (10-

σ threshold) to ensure that no spurious emission gets

included in the source model. Despite the shallowness

of this deconvolution, it is sufficient to provide a good

check for imaging quality. The DR of these images is

compared with the minimum DR (DRmin) of the im-

ages made during the process of calibration. If the DR

of an image after shallow deconvolution is found to be

smaller than a pre-defined fraction of DRmin, an ad-

ditional round of calibration is performed to account

for the differential antenna gain variations which might

have led to the drop in the DR. This pre-defined value

is set to 10% by default. If the user chooses to per-

form flagging during the final imaging, independent of

whether additional calibration is required or not, a single

round of flagging is done on the residual visibilities us-

ing a custom-developed flagging software, ankflag, which

is discussed in Section 5. Once the flagging is done, a

deep deconvolution is performed. These images are then

corrected for the instrumental primary beam to arrive

at the final images.

5. FLAGGER FOR P-AIRCARS

Radio Frequency Interference (RFI) is the name given

to the unwanted man-made radio signals which are inci-

dent on a radio telescope along with the cosmic signal.

The telescope records the superposition of the cosmic

signals and the RFI and the latter, when present, often

makes the dominant contribution. It is important to

remove this contaminating signal from the data before

calibration and imaging. This process is usually referred

to as flagging and often the quality of the final images de-

pends upon the efficacy of the flagging approaches and

algorithms. Therefore, an automated calibration and

imaging pipeline for high dynamic range imaging must

include efficient and effective ways to identify and flag

RFI. This is complicated partly by the fact that RFI

tends to span a large variety of spectral and temporal

characteristics, as well as signal strength. Some RFI

signals can be persistent and narrow-band, affecting the

same spectral channels in all observing sessions. There

are also instances of impulsive RFI which manifest as

broadband contamination of the data, and there are also

RFI features that are localized in the time-frequency

plane or drift in frequency with time. For solar obser-

vations, bright solar emissions can also mimic such RFI

features in the time-frequency plane.

In our experience, it is possible to improve upon the

flagging performance offered by the in-built automated

RFI flagging tasks in CASA (McMullin et al. 2007) (e.g.

“flagdata”). Depending upon how it is setup, one ends

up either flagging a significant amount of good data or

leaving some low-level RFI unflagged. Visual inspection

to identify RFI afflicted data offers better results, how-

ever, the large MWA data volumes make this approach

untenable. An independent flagging module, ankflag,

has been included in P-AIRCARS to meet our RFI flag-
ging needs.

Originally, ankflag was developed for an HI 21cm sur-

vey (Bera et al. 2019) with the upgraded Giant Metre-

wave Radio Telescope (uGMRT; Gupta et al. 2017), and

has been used for several previous studies (e.g., Das et al.

2019; Das et al. 2020; Mondal et al. 2020a; Das et al.

2022, etc.). It has been found to be very efficient for

flagging low-level RFI for the MWA solar observations

and hence has been integrated in P-AIRCARS. ankflag
aims to provide a flagging algorithm with an optimal

balance between over-flagging and leaving RFI contam-

inated data unflagged, and capable of dealing with low-

level RFI which is difficult to deal with using most com-

monly available flaggers. ankflag is available as an inde-

pendent module in P-AIRCARS. It can be used for RFI

flagging of interferometric data from any radio interfer-

ometric array.
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Figure 9. Demonstration of ankflag on the MWA data. Flagging is done on a single time-frequency slice using uv-bin
mode. The left and right panels show the amplitudes of the residual visibilities against the uv-wavelength before and after
flagging. Grey squares in the right-hand panel show the flagged data.

5.1. Basic Algorithm of ankflag

ankflag identifies bad or RFI-affected data as outliers

to the Gaussian statistics which is assumed to represent

the input data. Given this assumption, ankflag works

best on model subtracted residual visibilities, and sep-

arately on the real and imaginary parts of the visibil-

ities, as the amplitudes of the visibilities do not fol-

low Gaussian statistics. Some of the basic algorithms

for calculating the statistics of the input data are taken

from the FLAGCAL (Prasad & Chengalur 2012), previ-

ously written for flagging and calibration of the interfer-

ometric data from the Giant Metrewave Radio Telescope

(GMRT; Swarup 1991).

For any input data, a threshold for defining outliers

is determined from the sample size assuming Gaussian

statistics for the data. The threshold for the outlier ex-

pressed as Xσ, is set such that the expected number

of elements outside the interval [µ − Xσ, µ + Xσ] is

less than 1, where, σ is the rms and µ, the mean of the

data. A user-defined tolerance factor, f , is multiplied

by this threshold so that the effective allowed range for

the data is [µ− fXσ, µ+ fXσ]. Elements outside this

range are considered outliers and flagged. f essentially

accounts for the fact that the statistics of the data gen-

erally deviate from exact Gaussian statistics, and hence

lead to over-flagging data while trying to flag very low-

level RFI. We have found that a value of f ranging from

1.7 to 1.9 works well for the MWA solar observations.

For outlier detection, instead of the mean−rms statis-

tics, the user can also choose to use the median−MAD

(median absolute deviation) statistics. When the latter

is used, the mean is replaced by the median, and the rms

is replaced by 1.48×MAD (which is the same as the rms

for a Gaussian distribution). The mean−rms statistics

can be easily biased by the outliers present in the data,

while the median−MAD statistics are far more robust

against the outliers. However, the latter is also compu-

tationally more expensive and consequently makes the

flagger much slower. By default, P-AIRCARS config-

ures ankflag to use the median−MAD statistics.

ankflag has two modes of operation − baseline and

uvbin mode. Both of these modes are discussed below :

1. baseline mode: In the baseline mode, visibil-

ities corresponding to each scan for every base-

line are examined separately in the first step.

For every scan and every baseline, statistics are

calculated from the corresponding time-frequency

plane. Outlier visibilities are identified and flagged

based on these statistics. In the next step, de-
pending upon the choice of the user, statistics for

all scans and baselines are compared with one an-

other. This comparison is used to find if for some

scans some of the baselines are significantly worse

compared to the rest of the data. If found, these

particular scans are flagged for these affected base-

lines. A certain baseline, however, is not com-

pletely flagged unless all scans corresponding to

that baseline are found to be bad. Since solar emis-

sion can show drastic variation in flux density over

small durations and bandwidths, this mode is not

suitable for solar observation but has been used

successfully for other astronomical observations.

2. uvbin mode: In the uvbin mode, all visibili-

ties are binned in a user-defined number of two-

dimensional bins in the uv-plane, such that each
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bin has approximately the same number of visi-

bilities. Visibilities in each bin are inspected sepa-

rately to identify and flag outliers. The uvbin mode

is usually slower than the baseline mode and re-

lies on a good uv-coverage. Since the MWA has

a very good uv-coverage, this mode is ideal for

solar observations with the MWA and is used in

P-AIRCARS.

In both baseline and uvbin mode, each input polarization

is treated independently. ankflag is primarily written in

C, with a “wrapper” written in python to use it as an

independent python module. ankflag uses the GNU sci-

entific library (GSL, Galassi & Al 2018) for performing

algebraic and statistical tasks. Details of the tasks are

available online3.

5.2. Demonstration of ankflag

For this demonstration, we use ankflag in uvbin mode

on some example MWA solar data. The amplitudes of

the residual visibilities against uv-wavelength are shown

in Figure 9. The left and right panels show the data

before and after performing the flagging respectively.

The grey square in the right-hand plot shows the bad

data, which are flagged. A very small amount of good

data has been flagged. This demonstrates the capability

of ankflag to selectively remove low-level RFI/bad data

without over-flagging the good data.

6. CALIBRATION AND IMAGING PARAMETERS

For reasons discussed in Section 2, P-AIRCARS is de-

signed to determine the parameters for calibration and

imaging in an unsupervised manner. There are only two

high-level parameters that the user needs to specify to

guide the choices to be made by P-AIRCARS. These are

quality factor (QF) and robustness factor (RF). Both of

these parameters take three values : 0, 1, and 2. QF

relates to the choices impacting the final image quality,

with a higher number corresponding to a better imaging

quality. Similarly, RF relates to choices made regard-

ing the convergence criteria and robustness of the self-

calibration. The final choice of calibration parameters

depends upon the combination of QF and RF chosen,

while the final imaging parameters depend only on the

choice of QF. In general, larger numbers for QF and RF

lead to larger computational loads and hence longer run

times.

6.1. Calibration Parameters

3 https://p-aircars.readthedocs.io/en/latest

Multiple different parameters need to be specified for

calibration tasks. These include the solution interval

along the temporal axis (tinterval), the minimum ac-

ceptable signal-to-noise of the antenna gain solutions

(gmin,SNR), the shortest baselines to be used, and the

changes in DR (∆ DR) over the past few images, which

is used to define the convergence of the self-calibration

process. The length of the shortest baseline is chosen to

avoid any contributions from the Galactic diffuse emis-

sion as it is hard to model and can dominate the so-

lar signal. By default, P-AIRCARS excludes visibilities

below 3λ, which corresponds to ∼20 degree in angular

scale.

Some additional parameters also need to be specified

for the self-calibration process. During intensity self-

calibration, deconvolution thresholds are decreased in

steps with the self-calibration iterations. The start, stop

and increment values for these thresholds, thstart, thstop
and thstep respectively. These are specified in units of

image rms measured far away from the Sun, σ. We

define another quantity, the fractional residual flux den-

sity, which is the ratio of disc integrated flux densities

obtained from the residual and solar images from the

latest self-calibration iteration. Starting from thstart the

deconvolution threshold is lowered by thstep until it ei-

ther reaches thstop or the fractional residual flux density,

fres, drops below some pre-defined thresholds listed in

Table 1. If the imaging DR exceeds a pre-defined thresh-

old, DRmax, the self-calibration process is stopped even

though it might not have converged. With the increas-

ing values of QF and RF, a finer time and frequency

grid is used for calibration. The numerical values of all

of these parameters are chosen based on the combina-

tion of QF and RF chosen by the user, as listed in Table

1.

6.2. Imaging Parameters

Multiple different parameters need to be specified for

imaging. These include – the size of the image, pixel size,

the uv-taper parameter, visibility weighting scheme, the

choice of scales for multiscale deconvolution, the de-

convolution threshold, the deconvolution gain, and the

choice of gridding scheme (whether or not to use w-

projection). P-AIRCARS is designed to provide default

values of each of these parameters. The expert user al-

ways has the flexibility to override the defaults. The de-

fault values for the following parameters are estimated

from the data:

1. Pixel size: Assuming a circular point spread

function (PSF), the diameter of the PSF is com-

puted as, θ = 1.02 × λ
Bmax

rad, where, λ is the

wavelength of the observation in meter, and Bmax

https://p-aircars.readthedocs.io/en/latest
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QF RF thstart thstep thstop gmin,SNR ∆ DR tinterval (s) DRmax fres

0 0 9.0 1.0 6.0 2.5 25 30 100 0.03

0 1 9.0 1.0 6.5 3.0 22 20 500 0.03

0 2 9.0 1.0 7.9 3.5 20 15 1000 0.03

1 0 10.0 0.5 6.0 3.5 20 15 1000 0.015

1 1 10.0 0.5 6.5 4.0 18 10 5000 0.015

1 2 10.0 0.5 7.0 4.0 15 7 10000 0.015

2 0 11.0 0.25 6.5 4.0 18 10 10000 0.01

2 1 11.0 0.25 7.0 4.5 15 7 50000 0.01

2 2 11.0 0.25 7.0 4.5 12 5 100000 0.01

Table 1. Self-calibration parameters for different combinations of QF and RF.

is the maximum baseline length in meter. Assum-

ing three pixels across its diameter provide a suffi-

cient oversampling, the pixel size is determined as

θpix = θ/3.

2. uv-taper: To choose the uv-taper, the visibilities

are divided into radial bins of width 5λ each. The

shortest uv-bin without any visibilities is used to

define the size of the tapering function.

The default values for the following parameters are

decided based on the choice of the QF:

1. Image size: Not only is the FoV of the MWA

chromatic, but it also depends on the pointing

direction. The average full width half maxi-

mum (FWHM) FoV of the MWA at 150 MHz

is 600 degree2. By the first null of the primary

beam, the FoV increase to 3, 600 degree2 (Tingay

et al. 2013). For QF choices of 0, 1, and 2, P-

AIRCARS uses FoV corresponding to half of the

FWHM, FWHM, and up to the first null respec-

tively. Assuming FoV scales as 1
ν , where, ν is the

observing frequency, image size is determined as,

imsizeν =
√

FoV150/ν, where FoV 150 is the FoV

at 150 MHz. The total number of pixels in the im-

age is then calculated as npix = imsizeν/θpix. For

numerical efficiency reasons, the nearest 2n not ex-

ceeding npix gives the number of pixels, where n

is an integer.

2. Deconvolution threshold: P-AIRCARS per-

forms deep deconvolution for higher QF. The de-

convolution is performed down to a pre-defined

flux-density defined in terms of image rms. These

default thresholds are set to 7σ, 5σ, and 3σ for QF

values of 0, 1, and 2, respectively, where σ is the

rms measured far away from the Sun.

3. Deconvolution gain: As referred to CLEAN
gain, this parameter is set to 0.1, 0.05 and 0.01

for QF values of 0, 1 and 2 respectively.

4. w-projection: The Sun is the source with the

highest flux density at MWA frequencies. This

implies that despite the large FoV of the instru-

ment, the dominant flux density is concentrated

close to the phase center (Sun). This effectively

reduces the imaging problem to a narrow FoV sit-

uation. Increasing values of QF improve the abil-

ity of P-AIRCARS to account for the artifacts due

to the presence of other sources. For a QF value of

0, P-AIRCARS does not use w-projection. For a

QF value of 1, P-AIRCARS first examines the im-

age for the presence of any bright sources with flux

density comparable to the Sun in the images made

during the calibration process. Only if one or more

such sources are found, P-AIRCARS uses the w-

projection. P-AIRCARS always uses w-projection

for a QF value of 2.

The default values for the following parameters are

independent of the data and QF values.

1. Image weight: The MWA has a very large num-

ber of small baselines. Hence, natural weighting

provides higher sensitivity for extended emission
at the cost of the resolution and increased PSF

sidelobes. To strike an optimal balance between

sensitivity and resolution, P-AIRCARS uses briggs
weighting (Briggs 1995). A parameter, called the

robustness parameter, selects the desired level be-

tween uniform and natural weighting. For WS-
Clean this parameter is set to a default value of 0.5

in P-AIRCARS. The corresponding default value

of the same parameter for CASA is 1.0.

2. Scales for multiscale deconvolution: P-

AIRCARS uses multiscale deconvolution (Corn-

well 2008; Rau & Cornwell 2011). The perfor-

mance of the multiscale deconvolution depends on

the choice of the size of the Gaussian scales. P-

AIRCARS uses Gaussian with scales correspond-

ing to number of pixels 0, 3, 6, ...., θ�/θpix, where,
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θ� is the expected radius of the solar disc (Oberoi

et al. 2017).

7. P-AIRCARS FEATURES

This section briefly highlights some salient features of

P-AIRCARS.

1. Modularity: As described in Section 4, P-

AIRCARS architecture is highly modular. This

not only makes it easy to maintain and upgrade,

but it also enables P-AIRCARS to offer the pos-

sibility of using multiple different radio interfero-

metric packages. The latter allows P-AIRCARS

to make an optimal choice for a given task (e.g.

use of CubiCal for calibration, ankflag for flagging

and WSClean for imaging).

2. Ease of use: To facilitate the use by community

members with little or no prior experience in radio

interferometry, P-AIRCARS provides reasonable

defaults for all parameters. To allow more expe-

rienced users to explore the full range of options

offered by the underlying packages, P-AIRCARS

provides the facility to overwrite the defaults for

the most commonly fiddled parameter.

3. Input validation: For P-AIRCARS to run suc-

cessfully, all of the inputs need to be consis-

tent and compatible with the data. To ensure

this, P-AIRCARS first checks for this consistency

and compatibility before initiating processing. In

case some inconsistent or incompatible inputs are

found, their values are reset to the default values

and a warning is issued to the user.

4. Fault-tolerant: To be able to deal with a wide

variety of solar and instrumental conditions in an

unsupervised manner, P-AIRCARS has been de-

signed to be fault-tolerant. When it fails, it tries

to make data-driven decisions about updating the

relevant parameter values to overcome the source

of the problem.

5. Notification over e-mail: Typical run-time for

P-AIRCARS for MWA data can run into days. To

make it convenient for the users to stay abreast

of its progress, P-AIRCARS can provide regular

notifications about its status to a user-specified

list of e-mail addresses.

6. Graphical User Interface: P-AIRCARS pro-

vides a Graphical User Interface (GUI) for speci-

fying values of input parameters. The top panel

of Figure 10 shows the GUI. The input fields

are named to be largely self-explanatory and the

GUI provides some additional useful information

as well. The GUI includes a ADVANCED INPUTS
section where the user can provide custom param-

eters, which is disabled by default. To enable this

section of the GUI, the user must first uncheck the

Auto-calculate Parameters box. P-AIRCARS saves

a detailed log of the various processing steps and

also provides a graphical interface to easily view

it, as shown in the bottom panel of Figure 10.

8. P-AIRCARS REQUIREMENTS AND

PERFORMANCE

This section summarises the hardware and software

requirements for P-AIRCARS and provides some infor-

mation about its run-time for typical MWA data.

8.1. Hardware Requirements

P-AIRCARS is designed to be used on a wide variety

of hardware architectures, all the way from laptops and

workstations to HPCs. It uses a custom-designed paral-

lelization framework, which also does the scheduling for

non-HPC environments. P-AIRCARS has been tested

with a minimum configuration of 8 CPU threads and 8

GB RAM, which is increasingly commonplace in com-

modity laptops. Though it has not yet been tested, P-

AIRCARS should be able to run with a smaller number

of CPU threads and RAM. We note that P-AIRCARS

is usually not limited by RAM as the memory footprint

for typical spectro-polarimetric snapshot imaging appli-

cations is quite small. The typical MWA data volume for

a 4-minute observing run is about 180 GB. P-AIRCARS

requires at least twice the disc space occupied by the

data to run. P-AIRCARS has also been tested on work-

stations with 40−70 CPU threads and 256 GB of RAM.

8.2. Software Requirements

P-AIRCARS uses multiple radio interferometric soft-

ware packages (e.g., CASA, WSClean, CubiCal), each

of which have multiple specific software dependencies.

P-AIRCARS has been tested successfully on Ubuntu

(20.04) and CentOS (7 and 8) Linux environments.

P-AIRCARS requires Python 3.7 or higher. To re-

duce the tedium of dealing with dependency conflicts

and make P-AIRCARS deployable out-of-the-box, it has

been containerized using Docker (Merkel 2014). While

P-AIRCARS is under constant development, interested

users can download the latest stable version from https:

//github.com/devojyoti96/P-AIRCARS.

8.3. Assessment of Run-time

To provide an overall estimate for P-AIRCARS run-

time, we list the run times for individual processing

blocks:

https://github.com/devojyoti96/P-AIRCARS
https://github.com/devojyoti96/P-AIRCARS
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Figure 10. Top panel: Graphical User Interface of P-AIRCARS to provide inputs. Bottom panel: Graphical logger allows
us to view all logs of P-AIRCARS calibration and imaging.

1. Each RTF takes about an hour (marked by blue

cells in Figure 3).

2. Bandpass calibration for each coarse channel takes

about 15 minutes (marked by green cells with pur-

ple borders in Figure 3).

3. Polarization calibration for each coarse channel

takes about 45 minutes (marked by green cells

with purple borders in Figure 3).

4. Each differential intensity self-calibration takes

about 10 to 15 minutes (marked by dark grey and

orange cells in Figure 3).
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Figure 11. Variation of calibration time with the
available number of CPU threads. The green, orange,
blue, and red points represent the expected run-time for a
combination of temporal and spectral spans. The black cross
and magenta square shows the run-time from a real dataset
with 20 and 30 CPU threads respectively.

The first three steps are done sequentially and add up

to a minimum total run-time of about 2 hours. In addi-

tion, depending upon the duration and bandwidth of the

data, as well as the time and frequency intervals of the

calibration grid, additional calibration solutions need to

be computed for the orange and dark grey cells in Figure

3. These are all done in an embarrassingly parallel.

Figure 11 shows the expected variation in run-time,

t, taken for calibration as a function of the number of

CPU threads, NCPU, for a few different combinations

of temporal and spectral spans on a log scale. Orange

and red points show the run-time for a dataset with 12

coarse channels with an observing duration of 120 and

240 seconds, respectively. The difference between the

two curves is small at the low NCPU end and grows even

smaller with increasing NCPU, despite their observing

duration differing by a factor of two. This is because the

impact of the additional observing span is to require es-

sentially twice the number of differential self-calibration

runs. Each of these runs is not too time-consuming in it-

self, and at the low NCPU end, where the number of jobs

that can be spawned is limited by the available CPUs,

their impact is seen as a small increase in t. At the

large NCPU end, when there are enough resources avail-

able to spawn all of the differential calibration jobs in

parallel, there remains no difference in the correspond-

ing ts. The blue and green points show the variation of

t with NCPU for datasets with 24 coarse spectral chan-

nels for observing durations of 120 and 240 seconds re-

spectively and show similar behavior. Naturally, at the

clow NCPU end, they take significantly longer than the

12 coarse channel datasets, and the difference between t

for datasets with 24 and 12 coarse channels reduces with

increasing NCPU. These curves have been obtained us-

ing a model for P-AIRCARS performance. This model

has been benchmarked using measured t for the same

dataset with 24 coarse channels spanning 240 seconds

and processed using 20 and 32 CPU threads, respec-

tively. These points are marked in Figure 11 using a

black cross and a pink square and lie close to the t pre-

dicted by the model. We note that depending upon the

nature of the solar emission at the time and the qual-

ity of data, t can vary across different datasets with the

same temporal and spectral spans and these numbers

should be regarded as indicative.

Unlike calibration, imaging jobs are embarrassingly

parallel with t decreasing linearly with increasing NCPU.

A MWA solar observation, typically with 30.72 MHz

bandwidth and 4 minutes duration, leads to about

50, 000 images at 160 kHz and 0.5 s resolution. For

such a dataset, P-AIRCARS typically requires about 4

hours for calibration and about 250 hours (∼ 10 days)

for imaging using 32 CPU threads.

9. FUTURE PLANS

The modular design of P-AIRCARS allows it to ben-

efit easily from the developments and improvements be-

ing continually made in the underlying software pack-

ages it uses. We plan to incorporate the recent devel-

opments of these software packages and data structures

in P-AIRCARS. The next generation of measurement

set format (MS-v.3) has recently been released4, as a

part of the Next Generation CASA infrastructure (ng-
CASA)5 effort. The MS-v.3 offers a major advantage by

significantly reducing the input-output (IO) overheads

incurred during calibration and imaging processes. As

IO forms a notable fraction of P-AIRCARS run-time, we

expect this to bring significant benefits. Incorporating

MS-v.3 in P-AIRCARS, however, needs calibration and

imaging software to be compatible with the MS-v.3 data

structures. The next incarnation of CubiCal, QuartiCal
is already available and is designed to work with MS-v.3.

We plan to incorporate QuartiCal in P-AIRCARS.

While they have not been activated yet, P-AIRCARS

has internal mechanisms for each run of P-AIRCARS

to contribute calibration solutions to a global database.

This has been done with a vision to build a central repos-

itory of all available calibration solutions for MWA solar

data accessible to all P-AIRCARS users. It will benefit

the individual users by providing them with pre-existing

4 https://casacore.github.io/casacore-notes/264.pdf
5 https://cngi-prototype.readthedocs.io

https://casacore.github.io/casacore-notes/264.pdf
https://cngi-prototype.readthedocs.io
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calibration solutions when available and reducing their

run-time. Over time, as the usage of P-AIRCARS grows,

we expect this to become a useful resource for the com-

munity.

While the P-AIRCARS architecture is compatible

with HPC deployment, it has not been deployed on one

yet, primarily due to a lack of a suitable opportunity.

Currently, P-AIRCARS takes on the tasks of both do-

ing the parallelization as well as scheduling. In an HPC

environment the scheduling is usually done by a dedi-

cated job scheduler, like Portable Batch System (PBS,

Henderson 1995) or Slurm (Yoo et al. 2003). Work is

in progress to adapt P-AIRCARS for a cluster environ-

ment by incorporating an interface to a job scheduler. In

parallel, we are also exploring the possibility of adapting

P-AIRCARS for cloud computing platforms like Ama-

zon Web Services (AWS), and Google Cloud Platform

(GCP).

10. CONCLUSION

P-AIRCARS represents the state-of-the-art pipeline

for high-fidelity high dynamic-range spectro-

polarimetric snapshot solar imaging at low radio fre-

quencies. This work describes the implementation of

the robust polarization calibration algorithm devel-

oped by Kansabanik et al. (2022b), along with several

improvements to total intensity calibration, originally

implemented in AIRCARS (Mondal et al. 2019). P-

AIRCARS benefits from the experience gained and

issues encountered during the extensive usage of AIR-

CARS, making it more robust. It is also much more

user-friendly than AIRCARS. It delivers solar radio im-

ages with residual instrumental polarization leakages

comparable to those achieved by high-quality MWA ob-

servations of non-solar fields (e.g. Lenc et al. 2017; Lenc

et al. 2018). Solar radio imaging has usually been the

domain of specialists. Despite the usefulness of solar

radio imaging being well established and the increasing

availability of large volumes of excellent data in the

public domain, the steep learning curve involved has

been a hurdle in the large-scale use of these data. By

providing a robust tool that dramatically reduces the

effort involved in making high-quality solar radio im-

ages, we hope to help solar radio imaging become more

mainstream.

The current implementation of P-AIRCARS is opti-

mized for the MWA, however, the underlying algorithm

is equally applicable to all centrally condensed arrays,

including the upcoming SKA. The SKA is expected to

be a discovery machine in the field of solar radio and

heliospheric physics. P-AIRCARS and its predecessor,

AIRCARS, are already leading to explorations of previ-

ously inaccessible phase spaces. They have enabled mul-

tiple interesting scientific results spanning a large range

of solar phenomena using a SKA precursor, the MWA.

We expect P-AIRCARS to form the workhorse for solar

and heliospheric radio physics with the MWA and the

stepping stone for the solar radio imaging pipeline for

the SKA.
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